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ABSTRACT: Automation and machine learning techniques are
poised to dramatically accelerate the development of new materials
while simultaneously increasing our understanding of the physics
and chemistry that underlie the formation of such materials. In
particular, the convergence of accessible machine learning tools,
the availability of high-quality data, and the advent of accessible
experimental automation platforms have led to a number of closed-
loop autonomous experimentation platforms or “self-driving labs”.
Such platforms integrate robotic experimenters with Al-guided
experiment planning to autonomously perform large numbers of
experiments without human input. After briefly reviewing the state
of the field and the broad classes of autonomous efforts, this
perspective outlines several high-value focus areas for future ML-
guided characterization efforts. Among many advantages, we expect that autonomous approaches will allow the systematic study of
rare and nonequilibrium phenomena, provide dramatically greater measurement efficiency through targeting of cutting-edge,
resource-intensive characterization, and enable a higher level of thinking and experimental planning for human investigators. Finally,
we outline the principal barriers to realization of these advantages, including: (1) a lack of organizational structures and workforce
development for the highly interdisciplinary programs needed; (2) funding and publication mechanisms that assign greater value to
individual scientific results than foundational infrastructure development; and (3) a dearth of standards for open interchange of
hardware, software, and data among the polymer community. We believe that we are in the early days of a once-in-a-generation shift
in the way science is planned, executed, and evaluated, and we hope to provide a blueprint for the broader polymer community to
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take a leading role in this shift.

B INTRODUCTION

Polymer science, and indeed materials science at large, is
bearing witness to the convergence of several technological
advancements: accessible, open-source libraries for complex
machine-learning methods, a broad recognition of the intrinsic
value of materials measurement data, and the emergence of
low-cost, accessible robotic hardware. Increasingly, materials
characterization is being conducted by automated robotic
systems that can tirelessly synthesize and/or characterize
materials with near-perfect precision and quantified uncer-
tainty. Where physical and chemical models fall short, machine
learning (ML) models are filling gaps with unparalleled speed
and accuracy. The union of these approaches has been given
many names (e.g.,, self-driving laboratory, autonomous plat-
form, closed-loop experiments), but the results are common:
faster discovery and more complete characterization of highly
optimized materials. In this paradigm, the experimenter is
granted a virtual assistant that guides the course of the
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experiment with varying degree of autonomy from the human
scientist.

When reckoning with the impact of this paradigm shift, it is
useful to consider the name “self-driving lab” as an analogy for
the oft-used “self-driving car”. The term “self-driving lab” may
not be immediately intuitive to all audiences but the analogy to
self-driving cars is an accessible way to convey the concept of
an autonomous decision-making system. Self-driving laborato-
ries (SDLs), like self-driving cars, envision a future where the
scientist, or driver, can fully disengage from the task and relax
while an Al system speeds them to their destination, scientific
or physical, without input or guidance. Like present
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realizations of self-driving cars, self-driving laboratories are
better thought of as a hierarchy of guidance systems where
even partial realizations are useful. A car on the “self-driving
spectrum” might include features as basic as adaptive cruise
control (SAE Level 1) or as advanced as autonomous lane
guidance and route following with human oversight (SAE
Level 3)." Autonomous functions can also be quite limited in
scope and application and address only narrow aspects of the
task at hand, such as automatic parallel parking. Certain
components of an autonomous Al, such as traffic-aware route
planning, might be routinely used to provide input to a human
expert who remains in control without any hardware
integration at all (e.g, running a map application on a mobile
phone). The same vehicle might be operated in different
modes at different times depending on the expertise and trust
or comfort level of a human driver, for instance, engaging a
route-following AI while on the highway but disabling
automatic lane changes in dense traffic, disabling the
autonomous system while executing a nuanced maneuver like
allowing someone to merge in front, etc.

We consider each of these scenarios and operating modes to
have analogies in the design and operation of a self-driving lab.
For instance, an SDL might be operated with full closed-loop
ML guidance of each step in an experiment and allowed to run
unsupervised for a limited duration, such as overnight or over a
weekend. It might also be used as essentially a “robotic lab
technician”, preparing and measuring samples from a user-
defined list based on expert intuition. One might automate a
particular task, like sampling of polymers from a tray of vials
for chromatography, while still synthesizing the polymers and
preparing samples by hand. An SDL might use different levels
of engagement as the experiment progresses, such as seeding
an experimental measurement campaign with expert choices of
starting measurements before allowing the Al to run
independently or disconnecting an Al that has found local
extrema and inputting a set of manual conditions to encourage
broader search. While the degree of autonomy leveraged by
these different approaches varies, all represent increased
efficiency in characterization of polymeric materials and
complex fluids and meaningful progress toward more Al-
assisted and fully autonomous experiments.

The adoption of self-driving laboratories faces challenges as
the scientific world adapts to the AI revolution. While
significant demonstrations and progress has been made toward
this vision, fully autonomous self-driving laboratories remain
more aspirational than realized for most researchers. As
William Gibson aptly noted, “The future is already here —
it’s just not very evenly distributed.” Developing and running
self-driving laboratories is an unavoidably interdisciplinary
challenge that requires domain knowledge across multiple
fields. Material scientists understand the hypotheses, data
processing, and experimental instruments necessary to answer
their scientific questions, but often lack the proper coding or
automation skills. Instrument building requires skills in
mechanical and software engineering, which can present a
high barrier to development of autonomous laboratories,
especially if the engineering is not related to typical tasks
within the instrument’s scientific domain. While computer and
data scientists excel at implementing state-of-the-art ML and
Al methodologies, there remains a “productization gap” when
transitioning these methods into useful real-world tools that
physical scientists can rely upon. This challenge often stems
from the differing incentives and focus areas between computer

science research and the practical needs of domain scientists,
rather than a fundamental limitation of CS methods or
computer engineers. Further complicating these matters, the
modern funding environment and scientific reward structure
has struggled to find ways to support the development and
dissemination of autonomous platforms. Promising demos and
proofs of concept need to be transformed into reliable, user-
friendly tools for the broader scientific community. Both the
hardware and software associated with these tools need user
manuals, tutorials, and ongoing support as bugs are found and
features are added. Current academic incentives and funding
mechanisms are often not well-aligned with the sustained effort
required to bridge this gap, creating a significant barrier to the
widespread adoption of these powerful capabilities.

In this perspective, we briefly review the state of the field of
autonomous SDLs as applied to polymer science and
engineering, outline our perspective on growth areas and
vision for a future where polymer science is more efficient,
edge cases are better understood, and results are more reliable.

B PAST (AND PRESENT)

The use of automation and high-throughput techniques in
sample preparation and characterization has been a mainstay of
applied polymer science for decades.”” The combinational and
high-throughput science revolution that first began in the
2000s continues to demonstrate the utility of rapid materials
screening and property measurement through customized
sample synthesis and robotic automation techniques. These
concepts have grown into fully realized robotic and micro-
fluidic platforms that synthesize and characterize polymer
materials with minimal interactions from human operators.*”
While these platforms have been of great utility, it is important
to note that their designs are also often bespoke and inflexible,
making it hard to adapt them to material challenges outside of
their original design specifications.

These breakthroughs in automated experimentation were
(and are) being driven by the needs of fast-paced industrial
research. The nature of the studies needed to translate
foundational breakthroughs to products necessitates the
exploration of highly complex and constrained parameter
landscapes at a pace beyond what manual operators can
support. The growth of automation is further driven by simple
labor economics: robots will work constantly without breaks at
a cost inevitably lower than a human instrument operator,
unlocking increased throughput. Beyond throughput, bio-
sciences and routine chemical analytics have led the charge
into automation for an increase in measurement reliability and
traceability.

The rise of autonomous measurements began decades after
the initial rise of automation. While there are examples of
closed-loop experimentation in various fields," " the develop-
ment of ARES represented a significant advancement in
materials synthesis and characterization driven by an artificial
intelligence (AI) engine.lo Since then, a variety of other SDLs
have been created, all attempting to leverage our past advances
in automation in the new age of machine learning and data
science. Al agents driving synthetic platforms are tuning
polymer sequence, molar mass distribution, or simply the
efficiency of polymer syntheses.'' ~'> Other agents are focused
on optimizing the properties of polymer materials or
formulated mixtures.'*'® All of these agents attempt to
leverage the tireless speed of robotic platforms with machine-
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Mobile robot for
Sample transferring and loading

Figure 1. Examples of autonomous experiment platforms. (A) NIST Autonomous Formulation Laboratory, (B) Argonne PolyBot Platform,"” (C)
Bayesian Experimental Autonomous Researcher (BEAR),'® (D) Smart Dope," (E) PolyTron,” and (F) Jubilee open lab automation platform,
used for sonochemical synthesis.”' (B) Reproduced from ref 17. Copyright 2023 American Chemical Society. (C) Reproduced with permission
from ref 18. Copyright 2020 The American Association for the Advancement of Science. (D) Reproduced with permission from ref 19. Copyright
2024 John Wiley and Sons. (E) Reproduced with permission from ref 20 under a Creative Commons Attribution 3.0 Unported License. (F)
Reproduced with permission from ref 21 under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

guided precision to help optimize and discover new polymer
materials and formulations (Figure 1).

Even with these advancements, we find ourselves at a
bifurcation of paths in self-driving laboratories. As the
transformative potential of these techniques has become
clear, large-scale investment has been pursued and a
conversation created around large, national user facility-style
laboratories. Some nascent programs of note include the
PolyBot program at Argonne and the Autonomous For-
mulation Laboratory at NIST.'”** Such facilities are by no
means limited to government, with autonomous user programs
in active development in the University of Toronto-led
Acceleration Consortium and in other academic settings.”~ >’
All of these platforms center around investments on the scale
between hundreds of thousands and millions of US dollars.
They offer enormous potential for accessibility but little
potential for ownership, as few laboratories or funding agencies
have programs dedicated to investing such sums in infra-
structure (see below), and those that exist are highly
oversubscribed. Many are on funding clocks with a proof of
concept or initial result ending the continued operation.
Furthermore, many of the highest-performing platforms are
constructed by contractors with highly bespoke components
and limited potential for reconfiguration. This means that once
the initial objective of the study is complete the infrastructure
investment is essentially single-use unless care is taken in

designing a general system, sometimes as a trade-off with
performance for the designed task.

In parallel, several PIs have focused on developing open-
source laboratory automation using small-scale instrumenta-
tion typically under $50k USD.*® Generally, these unique
platforms are designed and constructed by scientists whose
motivations lie in domain science, such as polymer or material
science, rather than pure AI or robotics groups. Despite
dramatic differences in investment, the results have been no
less impactful than those from national facility-scale
laboratories; on the contrary, the accessibility of the
instrumentation has made high-risk/high-reward experiments
and extensive iteration possible. Notable examples of this
paradigm include the Bayesian Experimental Autonomous
Researcher platform for mechanical testing,'® a sonochemical
synthesis platform,”" and the PolyTron photochemical syn-
thesis platform.”” There are also compelling arguments that
instrument engineering and software development are best left
to, or at least conducted under the close guidance of,
professionals. However, a growing societal shift toward a
“maker mindset” has made software development and digital
fabrication technologies part of the curricula at younger and
younger stages, and recent advances in stereolithography
(SLA) additive manufacturing and high-quality measurement
electronics have made these techniques both useful for
scientific work and within reach of small-to-medium-scale
budgets and timeframes.
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A vparallel advance to the march of automated experimenta-
tion has occurred in the area of data-driven science and
machine learning for polymers. We note that this area has
recently been reviewed very comprehensively,”” so here we
highlight only a few efforts of particular relevance to
characterization of soft materials. Broadly, these advancements
represent novel platforms and approaches for automated data
analysis and facile methodologies to represent and store
polymer chemistry information, such as sequence and chain
length, in computer databases. ML tools, such as CREASE, are
being used provide better fits and extract more information
from neutron and X-ray scattering measurements.”® There
have also been works using Bayesian and information theory
methods to optimize neutron reflectivity measurements.””’
DeepStruc predicts crystal structures from pair-distribution
function measurements, and while not originally applied to
soft-materials, it demonstrates several powerful concepts (e.g.,
graph conditional variational autoencoders) that are immedi-
ately translated to our field>' Large, community-supported
polymer description schemes and data warehouses, such as
BigSMILES and CRIPT, have been developed and are already
being used.”””’

Finally, a promising use case of materials ML is a set of
methods we have come to colloquially refer to as “measure-
ment transmutation” (also commonly known as proxy
measurement). Put more rigorously, this is the inference of a
high-cost measurement (such as X-ray or neutron scattering)
from a known and controlled application space and a low-cost
measurement (such as optical spectroscopy) and machine
learning techniques rather than analytical data evaluation.
PairVAE uses specially trained autoencoders to jointly encode
electron microscopy and scattering measurements into a
common latent space.”* Using this approach, one measure-
ment can be transmuted into the other, allowing researchers to
leverage the real-space interpretability of microscopy and the
global structural averaging of scattering. Another recent
example of this paradigm is our recent work which
demonstrated correlation between polymer architectural
parameters authoritatively measured via size-exclusion chro-
matography and near-infrared (NIR) spectra.”> While NIR is
in principle sensitive to only local atomic order, machine
learning techniques such as functional principal component
analysis (fPCA) were able to recover the polymer con-
formation from subtle shifts in peak features, even though NIR
is in principle only sensitive to local atomic order. While such
methods are inherently heuristic and may never be appropriate
for a research environment where new materials lie outside the
training data set, they may open up new avenues for physics-
based polymer characterization at scales previously thought
impossible, such as postconsumer plastics recycling at the 100+
ton per day scale.

B POTENTIAL

Automation Enables the Routine, Rigorous Study of
Statistics. It can be argued that the central challenge in
polymer science is the description and engineering of statistical
ensembles of molecules. While some polymer characterization
explicitly measures distributions (e.g., chromatography), many
techniques make single-point measurements of single samples.
Likely due to their relative expense in time and instrumenta-
tion, structural measurements such as microscopy and
scattering frequently fall into this category. One simple, yet
key advance enabled by measurement automation is an

increase in the number of measurements that support a
given conclusion, allowing uncertainty measurement across
multiple samples as is routinely done in the life sciences. Such
techniques will allow the quantification of parameters
important for applied and theoretical studies alike.

This increase in data volume, beyond estimation of
uncertainty, is coupled with the intrinsic reproducibility of
automated sample preparation and measurement. The user-to-
user and site-to-site variability of synthetic, formulation, and
other experimental procedures is significant, yet poorly
documented. Frequently, difficult-to-control environmental
parameters such as barometric pressure, elevation, humidity,
and ambient dust as well as minute equipment or supplier
variations can play a key role in synthesis or characterization.
Processing parameters such as pipetting speed and technique,
stirring/shaking, or other flow-induced shear phenomena can
lead to differences in material microstructure and properties.*®
In addition, much attention has been paid in recent years to
polymer systems exhibiting pathway complexity, perhaps the
most notable among them the existence of low-symmetry cubic
phases such as the Frank-Kasper sigma phase in block
copolymer melts.”” In such systems, pioneering work by
Dorfman and Bates showed a complex dependence of micelle
size and tendency to form a given phase on the thermal
pathway.*® Human-driven, bespoke experimentation took years
to find this significant result, but rigorous automated
approaches that perform exactly the same actions, exactly the
same way, every time can reduce such irreproducibility. How
many people observed such low-symmetry sphere phases but
assumed it was a result of contamination or preparation error?

The convergence of data volume and increased reproduci-
bility offers significant potential to make edge phenomena
dramatically more well-defined, to the point that they are
worthy of deeper investigations. Most experimental inves-
tigations, especially looking near transitions of phase or
property, have “odd samples” that are frequently not reported
or repeated unless they have notable properties. The typical
assumption is that the sample is either (a) representative of a
human error in preparation or (b) the result of a hopelessly far-
from-equilibrium state and not worthy of further investigation.
Automated sample preparation promises to increase the
reproducibility of such samples and at minimum will allow
the close exploration of regions around such samples (i.e, with
only slightly different processing parameters) and the
estimation of the frequency of occurrence of the behavior.
This presents a significant, yet to our knowledge minimally
explored, route toward understanding the far-from-equilibrium
behavior of polymers.

While automated robotic systems have the potential to
improve reproducibility, we must also acknowledge that they
also have the capacity to amplify mistakes in experimental
design or erroneous AI/ML model assumptions at scales
beyond what individual researchers are capable of. An
assumption about the nature of a material or measurement
can lead to an unattended autonomous platform wasting
resources and time on an unattainable goal. The repeatability
of autonomous platforms makes it easier to detect, and
sometimes correct, systematic errors like this, but human
researchers must be engaged to identify and correct the error.
As discussed later, this is one reason why the most effective
autonomous platforms will be collaborative rather than
completely independent.
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Automation and Machine Learning Allow Targeting
of Rare Measurements. Beyond the benefits of reproduci-
bility and targeted investigation of edge cases, autonomous
science approaches guided by machine learning offer the
potential to dramatically increase the efficacy of cost- or time-
intensive measurements through multimodal precharacteriza-
tion and sample targeting. As representative examples of such
experiments, consider neutron dynamics techniques such as
QENS, surface rheology, isotope-labeled scattering and NMR
studies, etc. In such measurements, considering more than a
handful of individual samples would be a heroic endeavor
representative of massive resources that can be allocated to a
single study only in exceptional cases. The typical experimental
progression, therefore, often entails prior understanding of an
experimental/sample design space (e.g, from past literature
studies, proposed physical mechanisms, and prior character-
ization conducted by the investigators). While this is a
reasonable approach given the present state of the art, it is
intrinsically qualitative and vulnerable to biases: a proposed
model that links multiple data types can only rarely provide
statistical foundation for those links.

Data fusion approaches built around statistical models such
as Gaussian processes and machine learning tools, together
with correlation-based data inference or “transmutation” tools,
offer the potential to make sample selection for intensive
measurements the product of cohesive, statistical estimations
of the behavior of the sample and the impact of processing
parameters on the sample. Uncertainty evaluation approaches
provide a rigorous underpinning for what information the
proposed intensive study would provide and how it might
change or illuminate current understanding. We expect that
such prior studies might become a routine part of proposals for
beamtime at user facilities or other gates for access; the
justification provided to the community for why one study
over another should be conducted may involve statistical proof
of the importance of samples in reducing uncertainty for a
given task.

Autonomous and Human-Machine Teaming Is a
Force Multiplier. Most science students and graduates
experience some variant of the following story:

Working late into the night over many weeks, the scientist
runs the 10th (or 100th or 1000th) iteration of a
measurement/synthesis/simulation. Quick looks at the
intermediate data during collection seem fine, but when
they finally sit down to look at the full corpus of results, they
discover that the instrument was miscalibrated, or the
starting materials were contaminated, or their input files
contained an error.

While it is easy to view this as a lesson in being detail-
oriented and careful in execution, perhaps the lesson is that the
burden on the experimenter should be reduced. The truth is
that carrying out an experiment is often a rote, nonintellectual
task, and students and graduates should focus more on the
analysis of past experiments and the designing of the new ones.
Automated and autonomous platforms promise to revolu-
tionize the way we do science by freeing up the experimenter
to spend more time thinking about their science. Once
developed, these platforms can tirelessly conduct experiments
with near perfect precision at speeds that are impossible for
humans to match. It is important to note that these speeds go
beyond efficiency and can enable science that was previously
impossible. The doubling or tripling of data set sizes that were
previously constrained by beamtime or resource limitations

allows for statistical and modeling analyses that are impossible
on a singular measurement or small data set.

With the above benefits of autonomy outlined, we must
acknowledge the value of hands-on experimental work in
giving researchers the necessary foundation to design experi-
ments and troubleshoot problems. A agents cannot yet
design whole materials studies or leverage physical principles
to design a measurement apparatus. However, we also
recognize that as technology evolves, so too must our
approaches to education and training. Just as we no longer
require scientists to master slide rules or memorize extensive
tables of integrals due to the advent of computational tools, the
role of hands-on experimentation may evolve. The key is to
ensure that researchers develop a deep understanding of
experimental principles and critical thinking skills, which can
be achieved through a combination of hands-on work and
engagement with automated systems.

This revolution in the way we conduct measurements, or,
indeed, experiments at large, should not be viewed as replacing
the human scientist with a robotic one but rather giving the
human scientist a robotic collaborator. Human-machine
teaming allows scientists to balance scientific intuition against
hard-statistical and model-based analysis in real-time. This is
the vision behind automakers releasing SAE Level 3 vehicles.
While these self-driving vehicles require human attention and
intervention in complex scenarios, they still provide significant
utility to drivers and have the potential to reduce collisions.
Analogously, we must not miss out on the benefits of a partially
self-driving lab which collaborates with a human operator. A
“SAE Level 3” self-driving lab is much easier to implement than
a “SAE Level 5” and can still provide speedups and optimized
materials. While Level S can still be an ultimate goal, Level 3
systems exist today and can be upgraded when the improved
agents are ready for deployment. Furthermore, studies have
shown that the human-machine teaming paradigm (also called
human-in-the-loop) allows autonomous platforms to leverage
human intuition and scientific knowledge that would be
challenging to incorporate directly into the AI model.*”

B PATH FORWARD

With the past, present, and promise of self-driving laboratories
outlined, the question remains of how to go from the former to
the latter. Despite great demonstrations of the success and
utility of autonomous approaches in the polymer science
community and beyond, significant challenges remain. These
challenges fall into several broad categories: education and
workforce development, open and accessible hardware and
software, improved cohesion between theory and data,
outdated funding and performance models, and the need for
standard- and guideline-focused community groups. In the
following section, we will outline the nature of these challenges
and provide paths and opportunities for mitigating them.
Training and Workforce Development Needs for the
Autonomous Future. As discussed above, creating and
operating a self-driving lab is an unavoidably interdisciplinary
activity. While teams can and have come together to design
these systems, researchers with appropriate multidisciplinary
training will be essential to the broad adoption of autonomous
science. Even partial fluency in two or more of the defining
categories (i.e, hardware/robotic design, software develop-
ment, machine learning, domain science) will improve
translation and communication within a team. While there
are short courses and webinars that teach either basic scientific
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programming or machine learning, these skills must be
developed beyond what is possible in several days of lecture.
Traditional educational programs in polymer science and
related fields should pair their training, at the undergraduate
and graduate levels, with training in hardware/robotics,
software development, data science and/or machine learning.
It bears noting that the National Science Foundation has
recently funded several NRT (NSF Research Traineeship)
programs to develop curricula that combine materials science
and machine-learning training, indicating a growing recog-
nition of this need.”” These skills will be translatable far
beyond the scope of this article as the world progresses further
into the age of robotics and machine intelligence. At a
minimum, young scientists must be trained to have basic
proficiency in scientific software development beyond basic
programming, including such software engineering concepts as
version control, unit testing, continuous integration, semantic
versioning, and general collaborative development practices.
And, of course, the increased training in these new skill areas
should not diminish the training in traditional polymer physics
and chemistry. It is the combination of skills in automation,
autonomy, and domain science that are needed to bring about
a true change in the way we conduct scienctific studies.

Open Standards for Hardware, Software, and Data
Interchange. Even when designed using off-the-shelf
commercial components, the cost, time, and labor involved
in developing autonomous platforms is often large and puts
them out of reach for many research groups and organizations.
Furthermore, this investment can be hard to justify if the
platform might only be useful for a single study. The key to
widespread adoption of autonomous science lies in the
development of modular, open, and community-driven designs
for self-driving laboratories. These hardware designs and
software libraries should live beyond the supplementary files
of journal articles and be released on platforms, such as
GitHub or GitLab, where others can contribute to or expand
on them. Software and hardware should be designed as
combinations of single-concept, interchangeable components
so that those components are more easily and likely to be
reused.”’ We should support the development of software tools
and interfaces, such as HuggingFace.co or MLExchange.42’43
These tools democratize ML model development by providing
a platform where users can upload, design, train, and share
models. In the case of the latter,** MLExchange is designed to
address some of the unique needs of the scientific community
such as working with small data sets or mitigating the effects of
measurement artifacts.

While the promise of open hardware and software is clear,
there is a need for sustainable funding models and community
engagement to support such hardware and software libraries
over the long-term. The issues of continued maintenance,
documentation, and support for bug fixes and upgrades must
not be understated. Even for large, highly successful open
scientific projects, there is often disproportionate effort put
forward by small teams of unpaid and under-credited
volunteers. For open science, and by extension autonomous
science, to succeed, we need changes in the scientific culture
around shared credit for the collaborative development of
research tools.

Efforts to incentivize the shift of traditional commercial
instruments from bespoke, closed, single-purpose devices to
interchangeable, repairable, and programmable components
will be particularly valuable; true open hardware projects have

the double disadvantage that the time investment of fabrication
is substantial and each update, unlike in software, has a
marginal cost. Commercial systems designed for reconfigur-
ability and reusability offer the potential to reduce that burden
while maintaining many of the advantages of open hardware.

Somewhat separate from open hardware and software,
efforts such as CRIPT that provide open data warehousing are
a promising step toward generalized development of ML tools,
though it is worth community consideration of where such
databases should be held (individual universities, consortia,
government agencies, nonprofits, etc.) given the complex legal
and intellectual property considerations involved. More efforts
in schema standardization with input from experienced
experimental researchers is needed to make such platforms
fully reflective of the diversity of polymer characterization
data.**

Physics-Informed Machine Learning Modeling. The
next generation of machine learning models and agents for self-
driving platforms must move beyond the “black box” paradigm.
Incorporation of physical and chemical models into machine-
learning pipelines allows them to be more extrapolative and
interpretable.”® This incorporation can come in a variety of
forms. Examples of this are difference or quotient learning,
where models can learn the difference or ratio between a
theoretical prediction and experimental data.*® Separately, ML
models can be trained to predict the parameters of physical or
chemical models.”” In this way, the predictions of the full
pipeline will always be bounded by the scientific model.
Physics-informed neural nets (PINNs) and graph neural
networks use specific architectures and loss-function con-
structions to incorporate theory directly into the model.***’
While there are some promising works in using theory-
informed machine learning outside of self-driving laboratories,
these concepts have been much less applied in autonomous
agents.

Beyond the incorporation of theory, models which produce
uncertainty estimates, such as Gaussian processes (GPs),
should also be preferred, although it is crucial to understand
the limitations and details of the uncertainty estimation. For
example, while GPs produce uncertainty estimates, these
uncertainties may be unlike the true uncertainty of a
prediction, e.g., a homoscedastic GP cannot properly describe
the uncertainty of a heteroscedastic process, kernel design has
a strong impact on the extrapolative and predictive power.
Similarly, the uncertainty of variational GPs for classification is
connected to the choice of “link function” and may not be truly
reflective of the certainty in a class label. An alternative to using
GP-based models, which do not perform well in certain cases
such as with large data sets, is to consider statistical variants of
models such as Bayesian neural networks.

20th Century Funding for 21st Century Infrastruc-
ture. The disruptive, generational shift in laboratories from
manual to highly automated and data-driven infrastructure
could be greatly accelerated by the development of new
funding paradigms that support infrastructure and enable the
education and development of students as intrinsically cross-
disciplinary experts. Present models support scientific work,
but only support the needed infrastructure through either
equipment support on grants that primarily fund achievement
of a scientific objective or through rare programs that directly
fund the purchase of (mainly commercial) equipment. Few
programs exist that directly fund the development of scientific
infrastructure, which has traditionally been viewed as an
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overhead expense, yet in this moment of striking change this
lack of appropriate funding risks creating “have” and “have not”
laboratories. Similarly, while broad government support for
education and training has enabled countless advances,
insufficient support is available for development of new
curricula, particularly new curricula focused on interdiscipli-
nary needs. Such funding is essential for the full realization of
the autonomous science paradigm shift. In particular, funding
programs for the purchase of infrastructure should be
enhanced in order to provide support for laboratory-scale
investments of a general nature. In addition, such programs
should also support the intensive development of new
infrastructure, including through in-house engineering and
development. Translation strategies must exist for such
infrastructure to be shared, of course. Such funding is of
limited effect if there are no students and postdocs with
appropriate prior experience to be effective contributors to
such projects; educational funding that would support the
intensive work needed in development and retooling of
curricula is also sorely needed.

In addition to funding for students and postdocs, there is a
critical need for support of permanent nonprofessor technical
staff. These roles are essential for maintaining and operating
complex laboratory equipment over the long-term, which is
crucial for the sustainability of academic SDL platforms. While
automated systems can work continuously at potentially lower
costs than human researchers, the maintenance and upkeep of
these platforms (including their software, models, etc.)
represent a significant ongoing cost and must be accounted for.

It is worth noting that a long-term shift to an autonomous
future is somewhat misaligned with the incentives for career
development of students and postdocs or for that matter even
Pl-level staff; by their nature, autonomous projects require
effort from a variety of people with a variety of expertise, which
intrinsically conflicts with the model of a, single first author of
a manuscript. Taken ad absurdum, one could imagine
autonomous systems leading to a dramatic upheaval of the
academic research environment, though it is worth noting that
industrial and government research programs frequently
involve broad, diverse teams that share credit for accomplish-
ments. In any case, whatever changes come about to the
research system, it must be led by the demonstrated,
overwhelming advantage of autonomy, a goal toward which
many are making significant progress, yet one which remains
for now largely unrealized. By realigning our research funding
programs for the Al-driven 21st century, we have a chance to
maximize the impact of a generational paradigm shift.

Open Hardware and Software Communities for
Autonomous Polymer Science. For the promise of self-
driving laboratories to be realized, a community of developers
and users that focus on democratizing access to these tools
must be created. The CASE group and the Acceleration
Consortium are great examples of broad autonomous science-
focused communities, but more are needed.””*" Other groups
and communities should be formed that either focus on
specific scientific domains (e.g., polymer science and engineer-
ing) or take a more standards development role. For the latter,
such a group should develop open hardware and software
guidelines that lower the barrier to accessing automated and
autonomous experimentation solutions. These guidelines need
not be prescriptive but should provide guideposts that increase
the chances of success when developing a new self-driving lab.
Even curated lists of open hardware and software would be

helpful in jump-starting new projects. In particular, the
community should agree on recommended practices when
developing instrumentation and data APIs. This will not only
increase the usefulness of smaller platforms but will make it
easier for scientists to transfer their experiments to user-
facilities if they share common or interoperable protocols.
While they are likely too narrow for the polymer or larger
autonomous community, efforts such as the “Sample Environ-
ment Communication Protocol (SECoP)” and PyLabRobot

may serve as a starting template.sz’53

B CONCLUSION

Like society at large, science is in the midst of grappling with
the staggering pace of advances in data science, Al, and
machine learning. In times of abrupt change brought about by
breakthrough discoveries, it is always difficult to separate
lasting impacts from passing fads. On the basis of progress to
date and reasonably expected growth, we believe that
autonomous approaches have the potential to transform the
way polymer science is done in a lasting and meaningful way:
not only improving the efficiency of measurements but also
enabling studies with new reliability and reproducibility and
increasing our insights in subtle correlations of measurement
data across many experiment types. However, this trans-
formative potential demands changes of us as experimental
practitioners, too: changes in the way we collaborate on
projects, the way we develop the workforce of tomorrow, and
the way we share software, hardware, and data. None of these
challenges are insurmountable, and we believe that, as a result
of the underlying foundational advances, the future of polymer
science at large is brighter than it has been in the last half

century.
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